Interleukin-10 Protects Nitric Oxide–Dependent Relaxation During Diabetes

Author:

Gunnett Carol A.1,Heistad Donald D.12,Faraci Frank M.12

Affiliation:

1. Department of Internal Medicine, University of Iowa College of Medicine and VA Medical Center, Iowa City, Iowa

2. Department of Pharmacology, University of Iowa College of Medicine and VA Medical Center, Iowa City, Iowa

Abstract

Interleukin (IL)-10, an anti-inflammatory cytokine, preserves endothelial function during acute inflammation. We tested the hypotheses that IL-10 plays a protective role in blood vessels during diabetes by suppressing impairment of endothelium-dependent relaxation and that protection by IL-10 is mediated by effects on superoxide (O2−). Streptozotocin (150 mg/kg i.p.) or citrate buffer was injected into IL-10–deficient (IL-10−/−) mice and wild-type controls (IL-10+/+). In IL-10+/+ and IL-10−/− mice, blood glucose levels were ∼120 mg/dl after citrate administration and ∼400 mg/dl after streptozotocin administration. Vasorelaxation was examined in arteries in vitro 12–16 weeks later. Maximum relaxation to acetylcholine (30 μmol/l) was 88 ± 3% (means ± SE) in nondiabetic mice and 84 ± 3% in diabetic IL-10+ /+ mice (P > 0.05). Thus, at this time point, diabetes did not impair endothelium-dependent relaxation in vessels in wild-type mice. In contrast, maximum relaxation in vessels from diabetic IL-10−/− mice was significantly decreased (74 ± 5%) compared with nondiabetic IL-10−/− mice (93 ± 2%, P < 0.05). Superoxide dismutase with polyethylene glycol (PEG-SOD) restored impaired responses to acetylcholine to levels seen in controls. Responses to acetylcholine also were improved by allopurinol (an inhibitor of xanthine oxidase) in vessels from diabetic IL-10− /− mice. Thus, diabetes produces greater impairment of relaxation to acetylcholine in IL-10−/− mice than in IL-10+/ + mice. These findings provide direct evidence that IL-10 impedes mechanisms of endothelial dysfunction during diabetes. Restoration of vasorelaxation with PEG-SOD or allopurinol suggests that the mechanism(s) by which IL-10 preserves endothelium-dependent vasorelaxation involves O2−, perhaps by reducing production of O2− by xanthine oxidase.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3