Proinflammatory Mediators Chronically Downregulate the Formation of the Endothelium-Derived Hyperpolarizing Factor in Arteries Via a Nitric Oxide/Cyclic GMP–Dependent Mechanism

Author:

Kessler Paul1,Popp Rüdiger1,Busse Rudi1,Schini-Kerth Valérie B.1

Affiliation:

1. From the Institut für Kardiovaskuläre Physiologie und Institut für Anaesthesiologie, Klinikum der J.W.G.-Universität, Frankfurt/Main, Germany.

Abstract

Background —Endothelium-dependent dilator responses mediated by NO and endothelium-derived hyperpolarizing factor (EDHF) are altered in arteriosclerosis and sepsis. The possibility that proinflammatory mediators that stimulate the expression of inducible NO synthase (NOS II) affect the generation of EDHF was examined in isolated arteries. Methods and Results —Under combined blockade of NOS and cyclooxygenase, EDHF-mediated relaxation elicited by several agonists was significantly attenuated in rabbit carotid and porcine coronary arteries exposed to cytokines and lipopolysaccharide. The blunted relaxation was coincident with NOS II expression and was prevented by inhibition of NOS II as well as of global protein synthesis. The NO donor CAS 1609 and 8-bromo-cGMP mimicked the proinflammatory mediator effect. In contrast, long-term blockade of endothelial NO generation increased the relaxation in carotid but not in coronary arteries. Proinflammatory mediators reduced the synthesis of EDHF assessed as hyperpolarization of vascular smooth muscle cells elicited by the effluent from bradykinin-stimulated coronary arteries. Proinflammatory mediators induced NOS II expression in cultured endothelial cells and decreased the expression of cytochrome P450 enzymes, which are the most probable candidates for the synthesis of EDHF. Conclusions —Proinflammatory mediators inhibit the formation of EDHF in isolated arteries. This impairment is coincident with NOS II expression in the arterial wall and seems to be mediated through the induced generation of NO, which downregulates the putative EDHF-forming enzyme. Thus, a decreased formation of EDHF may contribute to the endothelial dysfunction in arteriosclerosis and sepsis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3