Vascular effects of LPS in mice deficient in expression of the gene for inducible nitric oxide synthase

Author:

Gunnett Carol A.1,Chu Yi1,Heistad Donald D.1,Loihl Angela1,Faraci Frank M.1

Affiliation:

1. Departments of Internal Medicine and Pharmacology, Cardiovascular Center, University of Iowa College of Medicine, Iowa City, Iowa 52242

Abstract

The inducible isoform of nitric oxide synthase (iNOS) is expressed after systemic administration of lipopolysaccharide (LPS). The importance of expression of iNOS in blood vessels is poorly defined. Because nitric oxide from iNOS may alter vasomotor function, we examined effects of LPS on vasomotor function in carotid arteries from iNOS-deficient mice. We studied contraction of the carotid artery from wild-type and iNOS-deficient mice in vitro 12 h after injection of LPS (20 mg/kg ip). Contractile responses to PGF (3–30 μM) and thromboxane A2 analog (U-46619; 3–100 nM) were evaluated using vascular rings from mice treated with vehicle or LPS. Maximum force of contraction generated by rings in response to PGF was 0.39 ± 0.02 and 0.25 ± 0.01 (SE) g ( n = 14) in vehicle and LPS-treated wild-type mice, respectively ( P < 0.001 vs. vehicle). Thus LPS reduced constrictor responses in wild-type mice. Thiocitrulline and aminoguanidine (inhibitors of iNOS) improved contractile responses from LPS-treated wild-type vessels. Indomethacin also improved constrictor responses in arteries from wild-type mice injected with LPS. In contrast, contraction of the carotid arteries in response to PGF and U-46619 was not impaired in LPS-treated iNOS-deficient mice, and contraction was not altered by inhibitors of iNOS. Expression of iNOS mRNA was confirmed using RT-PCR in carotid arteries from wild-type mice after injection of LPS but not vehicle. PCR products for iNOS were not observed in iNOS-deficient mice. These findings provide the first direct evidence that iNOS mediates impairment of vascular contraction after treatment with LPS.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3