Effects of Vitamin E on Susceptibility of Low-Density Lipoprotein and Low-Density Lipoprotein Subfractions to Oxidation and on Protein Glycation in NIDDM

Author:

Reaven Peter D1,Herold David A2,Barnett Joellen1,Edelman Steve1

Affiliation:

1. Division of Endocrinology and Metabolism, Department of Medicine University of California San Diego, La Jolla, California

2. Division of Pathology, Department of Medicine, University of California San Diego, La Jolla, California

Abstract

OBJECTIVE To evaluate the effect of vitamin E supplementation on the susceptibility of low-density lipoprotein (LDL) and LDL subfractions to oxidation and on protein glycation in non-insulin-dependent diabetes mellitus (NIDDM). RESEARCH DESIGN AND METHODS Twenty-one men with NIDDM (HbA1c = 6-10%), ages 50–70, were randomly assigned to either 1,600 IU/day of vitamin E or placebo for 10 weeks after a 4-week placebo period. LDL and LDL subfractions were isolated after 4 weeks of placebo and after 6 and 10 weeks of therapy. Susceptibility of LDL to copper-mediated oxidation was measured by conjugated diene formation (lag time) and formation of thiobarbituric acid-reactive substances (TBARS). Fasting serum glucose, mean weekly blood glucose, HbA1c, and glycated plasma protein concentrations were also determined at these time points. RESULTS Vitamin E content in plasma and LDL increased 4.0- and 3.7-fold, respectively, in the vitamin E-treated group. Vitamin E decreased the susceptibility of LDL to oxidation in comparison with placebo (lag time, 243 ± 46 vs. 151 ± 22 min, P < 0.01; 3 h TBARS, 24 ± 12 vs. 66 ± 18 nmol malondialdehyde/mg LDL, P < 0.05). Vitamin E content also increased significantly in both buoyant and dense LDL subfractions, and their oxidation was dramatically reduced. The lag time of LDL oxidation correlated well with the content of vitamin E in both LDL and its subfractions (r = 0.69–0.92). Glycemic indexes did not change significantly in either group during the study. Protein glycation, including glycated hemoglobin, glycated albumin, glycated total plasma proteins, and glycated LDL were unchanged in the vitamin E group. CONCLUSIONS Supplementation of vitamin E in NIDDM leads to enrichment of LDL and LDL subfractions and reduced susceptibility to oxidation. Despite a greater percentage increase in vitamin E content in small dense LDL, it remained substantially more susceptible to oxidation than was buoyant LDL. This suggests that dense, LDL may gain less protection against oxidation from antioxidant supplementation than does larger, more buoyant LDL. In contrast to previous reports, vitamin E supplementation did not reduce glycation of intracellular or plasma proteins.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3