Brain Glucagon-Like Peptide-1 Regulates Arterial Blood Flow, Heart Rate, and Insulin Sensitivity

Author:

Cabou Cendrine123,Campistron Gérard123,Marsollier Nicolas4,Leloup Corinne25,Cruciani-Guglielmacci Celine4,Pénicaud Luc25,Drucker Daniel J.6,Magnan Christophe4,Burcelin Rémy12

Affiliation:

1. Institut National de la Santé et de la Recherche Médicale (INSERM), U858, Institute of Molecular Medicine Rangueil, Toulouse, France

2. Université Toulouse III Paul-Sabatier, IFR31, Toulouse, France

3. Faculté des Sciences Pharmaceutiques, Toulouse, France

4. Université Paris 7, UMR CNRS 7059, Paris, France

5. UMR UPS-CNRS 5241, Toulouse, France

6. Banting and Best Diabetes Centre, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada

Abstract

OBJECTIVE— To ascertain the importance and mechanisms underlying the role of brain glucagon-like peptide (GLP)-1 in the control of metabolic and cardiovascular function. GLP-1 is a gut hormone secreted in response to oral glucose absorption that regulates glucose metabolism and cardiovascular function. GLP-1 is also produced in the brain, where its contribution to central regulation of metabolic and cardiovascular homeostasis remains incompletely understood. RESEARCH DESIGN AND METHODS— Awake free-moving mice were infused with the GLP-1 receptor agonist exendin-4 (Ex4) into the lateral ventricle of the brain in the basal state or during hyperinsulinemic eu-/hyperglycemic clamps. Arterial femoral blood flow, whole-body insulin-stimulated glucose utilization, and heart rates were continuously recorded. RESULTS— A continuous 3-h brain infusion of Ex4 decreased femoral arterial blood flow and whole-body glucose utilization in the awake free-moving mouse clamped in a hyperinsulinemic-hyperglycemic condition, only demonstrating that this effect was strictly glucose dependent. However, the heart rate remained unchanged. The metabolic and vascular effects of Ex4 were markedly attenuated by central infusion of the GLP-1 receptor (GLP-1R) antagonist exendin-9 (Ex9) and totally abolished in GLP-1 receptor knockout mice. A correlation was observed between the metabolic rate and the vascular flow in control and Ex4-infused mice, which disappeared in Ex9 and GLP-1R knockout mice. Moreover, hypothalamic nitric oxide synthase activity and the concentration of reactive oxygen species (ROS) were also reduced in a GLP-1R–dependent manner, whereas the glutathione antioxidant capacity was increased. Central GLP-1 activated vagus nerve activity, and complementation with ROS donor dose-dependently reversed the effect of brain GLP-1 signaling on peripheral blood flow. CONCLUSIONS— Our data demonstrate that central GLP-1 signaling is an essential component of circuits integrating cardiovascular and metabolic responses to hyperglycemia.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3