Abstract
Introduction: Whether central glucagon-like peptide 1 (GLP-1)/GLP-1 receptor system mediated peripheral glucose homeostasis in patients with traumatic brain injury (TBI) is not clear. We aim to determine if plasma GLP-1 level could distinguish the non-survivors from the survivors during the first 14 days after TBI that could prognose 6 months mortality. Methods: Metabolic, inflammatory, and hematologic profiles were examined in 73 patients with TBI in neurological intensive care unit. Factors that discriminate non-survivors from survivors were determined by two-way ANOVA. Biomarkers associated with mortality were determined by binary logistic regression and Cox proportional hazard regression. Results: The non-survivors had higher infectious SOFA scores (p < 0.001), lower first 3 days’ body temperature (p = 0.017), greater chance of cerebral hernia (p = 0.048), and decompressive craniectomy (p = 0.001) than the survivors. Higher 14-day plasma GLP-1 (p < 0.0001), glucose (p = 0.002), and IL-6 (p = 0.005) levels, in contrast with lower insulin level at days 4–7 (p = 0.020) were found in non-survivors than in survivors. Except the survivors who had an increased 14-day platelet number (p < 0.001), the two groups did not differ in hematological profile and intestinal barrier function. Although GLP-1 correlated closely with IL-6 in both the groups, it correlated with neither insulin nor glucose in each group. GLP-1 on days 8–10 and IL-6 on days 1–3 were positively, while insulin on days 4–7 was negatively associated with mortality. Conclusion: Persistent higher GLP-1 level in non-survivors over the survivors may present more severe central resistance to endogenous GLP-1 in non-survivors, which may be associated with progressive hyperglycemia with increased mortality in TBI.
Subject
Cellular and Molecular Neuroscience,Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism