DarkEmbed: Exploit Prediction With Neural Language Models

Author:

Tavabi Nazgol,Goyal Palash,Almukaynizi Mohammed,Shakarian Paulo,Lerman Kristina

Abstract

Software vulnerabilities can expose computer systems to attacks by malicious actors. With the number of vulnerabilities discovered in the recent years surging, creating timely patches for every vulnerability is not always feasible. At the same time, not every vulnerability will be exploited by attackers; hence, prioritizing vulnerabilities by assessing the likelihood they will be exploited has become an important research problem. Recent works used machine learning techniques to predict exploited vulnerabilities by analyzing discussions about vulnerabilities on social media. These methods relied on traditional text processing techniques, which represent statistical features of words, but fail to capture their context. To address this challenge, we propose DarkEmbed, a neural language modeling approach that learns low dimensional distributed representations, i.e., embeddings, of darkweb/deepweb discussions to predict whether vulnerabilities will be exploited. By capturing linguistic regularities of human language, such as syntactic, semantic similarity and logic analogy, the learned embeddings are better able to classify discussions about exploited vulnerabilities than traditional text analysis methods. Evaluations demonstrate the efficacy of learned embeddings on both structured text (such as security blog posts) and unstructured text (darkweb/deepweb posts). DarkEmbed outperforms state-of-the-art approaches on the exploit prediction task with an F1-score of 0.74.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Compact Vulnerability Knowledge Graph for Risk Assessment;ACM Transactions on Knowledge Discovery from Data;2024-07-31

2. Integrating AI-driven threat intelligence and forecasting in the cyber security exercise content generation lifecycle;International Journal of Information Security;2024-05-10

3. When ChatGPT Meets Vulnerability Management: The Good, the Bad, and the Ugly;2024 International Conference on Computing, Networking and Communications (ICNC);2024-02-19

4. Navigating the Shadows: Manual and Semi-Automated Evaluation of the Dark Web for Cyber Threat Intelligence;IEEE Access;2024

5. APTer: Towards the Investigation of APT Attribution;2023 IEEE Conference on Dependable and Secure Computing (DSC);2023-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3