A Compact Vulnerability Knowledge Graph for Risk Assessment

Author:

Yin Jiao1ORCID,Hong Wei2ORCID,Wang Hua1ORCID,Cao Jinli3ORCID,Miao Yuan1ORCID,Zhang Yanchun1ORCID

Affiliation:

1. Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia

2. School of Artificial Intelligence, Chongqing University of Arts and Sciences, Chongqing, China

3. Department of Computer Science and Information Technology, La Trobe University, Melbourne, Australia

Abstract

Software vulnerabilities, also known as flaws, bugs or weaknesses, are common in modern information systems, putting critical data of organizations and individuals at cyber risk. Due to the scarcity of resources, initial risk assessment is becoming a necessary step to prioritize vulnerabilities and make better decisions on remediation, mitigation, and patching. Datasets containing historical vulnerability information are crucial digital assets to enable AI-based risk assessments. However, existing datasets focus on collecting information on individual vulnerabilities while simply storing them in relational databases, disregarding their structural connections. This article constructs a compact vulnerability knowledge graph, VulKG, containing over 276 K nodes and 1 M relationships to represent the connections between vulnerabilities, exploits, affected products, vendors, referred domain names, and more. We provide a detailed analysis of VulKG modeling and construction, demonstrating VulKG-based query and reasoning, and providing a use case of applying VulKG to a vulnerability risk assessment task, i.e., co-exploitation behavior discovery. Experimental results demonstrate the value of graph connections in vulnerability risk assessment tasks. VulKG offers exciting opportunities for more novel and significant research in areas related to vulnerability risk assessment. The data and codes of this article are available at https://github.com/happyResearcher/VulKG.git .

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3