A Change-Detection Based Framework for Piecewise-Stationary Multi-Armed Bandit Problem

Author:

Liu Fang,Lee Joohyun,Shroff Ness

Abstract

The multi-armed bandit problem has been extensively studied under the stationary assumption. However in reality, this assumption often does not hold because the distributions of rewards themselves may change over time. In this paper, we propose a change-detection (CD) based framework for multi-armed bandit problems under the piecewise-stationary setting, and study a class of change-detection based UCB (Upper Confidence Bound) policies, CD-UCB, that actively detects change points and restarts the UCB indices. We then develop CUSUM-UCB and PHT-UCB, that belong to the CD-UCB class and use cumulative sum (CUSUM) and Page-Hinkley Test (PHT) to detect changes. We show that CUSUM-UCB obtains the best known regret upper bound under mild assumptions. We also demonstrate the regret reduction of the CD-UCB policies over arbitrary Bernoulli rewards and Yahoo! datasets of webpage click-through rates.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SOQ: Structural Reinforcement Learning for Constrained Delay Minimization With Channel State Information;IEEE Internet of Things Journal;2024-02-01

2. Adaptive Data Placement in Multi-Cloud Storage: A Non-Stationary Combinatorial Bandit Approach;IEEE Transactions on Parallel and Distributed Systems;2023-11

3. Model-Based Thompson Sampling for Frequency and Rate Selection in Underwater Acoustic Communications;IEEE Transactions on Wireless Communications;2023-10

4. Contextual and Nonstationary Multi-armed Bandits Using the Linear Gaussian State Space Model for the Meta-Recommender System;2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2023-10-01

5. Age-of-Information Minimization for Energy Harvesting Sensor in Non-Stationary Environment;2023 21st International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt);2023-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3