Which LLM to Play? Convergence-Aware Online Model Selection with Time-Increasing Bandits

Author:

Xia Yu1ORCID,Kong Fang2ORCID,Yu Tong3ORCID,Guo Liya4ORCID,Rossi Ryan A.3ORCID,Kim Sungchul3ORCID,Li Shuai2ORCID

Affiliation:

1. Shanghai Jiao Tong University & University of Michigan, Shanghai, China

2. Shanghai Jiao Tong University, Shanghai, China

3. Adobe Research, San Jose, CA, USA

4. Tsinghua University, Beijing, China

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

ACM

Reference45 articles.

1. The non-stationary stochastic multi-armed bandit problem

2. Peter Auer, Pratik Gajane, and Ronald Ortner. 2019. Adaptively tracking the best bandit arm with an unknown number of distribution changes. In Conference on Learning Theory. PMLR, 138--158.

3. Omar Besbes, Yonatan Gur, and Assaf Zeevi. 2014. Stochastic multi-armed-bandit problem with non-stationary rewards. Advances in neural information processing systems, Vol. 27 (2014), 199--207.

4. Multi-armed bandit problem with known trend

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3