Decentralised Learning in Systems With Many, Many Strategic Agents

Author:

Mguni David,Jennings Joel,Munoz de Cote Enrique

Abstract

Although multi-agent reinforcement learning can tackle systems of strategically interacting entities, it currently fails in scalability and lacks rigorous convergence guarantees. Crucially, learning in multi-agent systems can become intractable due to the explosion in the size of the state-action space as the number of agents increases. In this paper, we propose a method for computing closed-loop optimal policies in multi-agent systems that scales independently of the number of agents. This allows us to show, for the first time, successful convergence to optimal behaviour in systems with an unbounded number of interacting adaptive learners. Studying the asymptotic regime of N-player stochastic games, we devise a learning protocol that is guaranteed to converge to equilibrium policies even when the number of agents is extremely large. Our method is model-free and completely decentralised so that each agent need only observe its local state information and its realised rewards. We validate these theoretical results by showing convergence to Nash-equilibrium policies in applications from economics and control theory with thousands of strategically interacting agents.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3