Author:
Gu Jiatao,Im Daniel Jiwoong,Li Victor O.K.
Abstract
Previous neural machine translation models used some heuristic search algorithms (e.g., beam search) in order to avoid solving the maximum a posteriori problem over translation sentences at test phase. In this paper, we propose the \textit{Gumbel-Greedy Decoding} which trains a generative network to predict translation under a trained model. We solve such a problem using the Gumbel-Softmax reparameterization, which makes our generative network differentiable and trainable through standard stochastic gradient methods. We empirically demonstrate that our proposed model is effective for generating sequences of discrete words.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献