When Pairs Meet Triplets: Improving Low-Resource Captioning via Multi-Objective Optimization

Author:

Wu Yike1,Zhao Shiwan2,Zhang Ying1,Yuan Xiaojie1,Su Zhong2

Affiliation:

1. College of Computer Science, Nankai University, Tianjin, China

2. IBM Research - China, Beijing, China

Abstract

Image captioning for low-resource languages has attracted much attention recently. Researchers propose to augment the low-resource caption dataset into (image, rich-resource language, and low-resource language) triplets and develop the dual attention mechanism to exploit the existence of triplets in training to improve the performance. However, datasets in triplet form are usually small due to their high collecting cost. On the other hand, there are already many large-scale datasets, which contain one pair from the triplet, such as caption datasets in the rich-resource language and translation datasets from the rich-resource language to the low-resource language. In this article, we revisit the caption-translation pipeline of the translation-based approach to utilize not only the triplet dataset but also large-scale paired datasets in training. The caption-translation pipeline is composed of two models, one caption model of the rich-resource language and one translation model from the rich-resource language to the low-resource language. Unfortunately, it is not trivial to fully benefit from incorporating both the triplet dataset and paired datasets into the pipeline, due to the gap between the training and testing phases and the instability in the training process. We propose to jointly optimize the two models of the pipeline in an end-to-end manner to bridge the training and testing gap, and introduce two auxiliary training objectives to stabilize the training process. Experimental results show that the proposed method improves significantly over the state-of-the-art methods.

Funder

Chinese Scientific and Technical Innovation Project 2030

NSFC-Xinjiang Joint Fund

NSFC-General Technology Joint Fund for Basic Research

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference43 articles.

1. SPICE: Semantic Propositional Image Caption Evaluation

2. Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering

3. Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to align and translate. In Proceedings of the 3rd International Conference on Learning Representations. 2015.

4. Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In Proceedings of the Acl Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization. 65–72.

5. Say As You Wish: Fine-Grained Control of Image Caption Generation With Abstract Scene Graphs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3