A Hybrid Collaborative Filtering Model with Deep Structure for Recommender Systems

Author:

Dong Xin,Yu Lei,Wu Zhonghuo,Sun Yuxia,Yuan Lingfeng,Zhang Fangxi

Abstract

Collaborative filtering (CF) is a widely used approach in recommender systems to solve many real-world problems. Traditional CF-based methods employ the user-item matrix which encodes the individual preferences of users for items for learning to make recommendation. In real applications, the rating matrix is usually very sparse, causing CF-based methods to degrade significantly in recommendation performance. In this case, some improved CF methods utilize the increasing amount of side information to address the data sparsity problem as well as the cold start problem. However, the learned latent factors may not be effective due to the sparse nature of the user-item matrix and the side information. To address this problem, we utilize advances of learning effective representations in deep learning, and propose a hybrid model which jointly performs deep users and items’ latent factors learning from side information and collaborative filtering from the rating matrix. Extensive experimental results on three real-world datasets show that our hybrid model outperforms other methods in effectively utilizing side information and achieves performance improvement.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3