When large language models meet personalization: perspectives of challenges and opportunities

Author:

Chen Jin,Liu Zheng,Huang Xu,Wu Chenwang,Liu Qi,Jiang Gangwei,Pu Yuanhao,Lei Yuxuan,Chen Xiaolong,Wang Xingmei,Zheng Kai,Lian Defu,Chen Enhong

Abstract

AbstractThe advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, common-sense reasoning, etc. Such a major leap forward in general AI capacity will fundamentally change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, like conventional recommender systems and search engines, large language models present the foundation for active user engagement. On top of such a new foundation, users’ requests can be proactively explored, and users’ required information can be delivered in a natural, interactable, and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as a general-purpose interface, the personalization systems may compile user’s requests into plans, calls the functions of external tools (e.g., search engines, calculators, service APIs, etc.) to execute the plans, and integrate the tools’ outputs to complete the end-to-end personalization tasks. Today, large language models are still being rapidly developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be right the time to review the challenges in personalization and the opportunities to address them with large language models. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

Funder

Hong Kong University of Science and Technology

Publisher

Springer Science and Business Media LLC

Reference288 articles.

1. Zhao, W.X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., et al.: A survey of large language models. arXiv:2303.18223 (2023)

2. Huang, J., Chang, K.C.-C.: Towards reasoning in large language models: a survey. arXiv:2212.10403 (2022)

3. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

4. Salemi, A., Mysore, S., Bendersky, M., Zamani, H.: Lamp: When large language models meet personalization. arXiv:2304.11406 (2023)

5. Wu, L., Zheng, Z., Qiu, Z., Wang, H., Gu, H., Shen, T., Qin, C., Zhu, C., Zhu, H., Liu, Q., et al.: A survey on large language models for recommendation. arXiv:2305.19860 (2023)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perceptions about the Use of Virtual Assistants for Seeking Health Information among Caregivers of Young Childhood Cancer Survivors;2024-08-29

2. A survey on large language models for recommendation;World Wide Web;2024-08-22

3. Ontology in Hybrid Intelligence: A Concise Literature Review;Future Internet;2024-07-28

4. NLP Based Automated Text Summarization and Translation: A Comprehensive Analysis;2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS);2024-07-10

5. Reinforcement Learning-based Recommender Systems with Large Language Models for State Reward and Action Modeling;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3