Asynchronous Mini-Batch Gradient Descent with Variance Reduction for Non-Convex Optimization

Author:

Huo Zhouyuan,Huang Heng

Abstract

We provide the first theoretical analysis on the convergence rate of asynchronous mini-batch gradient descent with variance reduction (AsySVRG) for non-convex optimization. Asynchronous stochastic gradient descent (AsySGD) has been broadly used for deep learning optimization, and it is proved to converge with rate of O(1/\sqrt{T}) for non-convex optimization. Recently, variance reduction technique is proposed and it is proved to be able to accelerate the convergence of SGD greatly. It is shown that asynchronous SGD method with variance reduction technique has linear convergence rate when problem is strongly convex. However, there is still no work to analyze the convergence rate of this method for non-convex problem. In this paper, we consider two asynchronous parallel implementations of mini-batch gradient descent method with variance reduction: one is on distributed-memory architecture and the other is on shared-memory architecture. We prove that both methods can converge with a rate of O(1/T) for non-convex optimization, and linear speedup is accessible when we increase the number of workers. We evaluate our methods by optimizing multi-layer neural networks on two real datasets (MNIST and CIFAR-10), and experimental results demonstrate our theoretical analysis.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Method for Optimization: Optimal Control;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25

2. A search strategy for publications in interdisciplinary research;El Profesional de la información;2023-10-13

3. Momentum-Based Variance-Reduced Proximal Stochastic Gradient Method for Composite Nonconvex Stochastic Optimization;Journal of Optimization Theory and Applications;2022-12-02

4. Scaling up stochastic gradient descent for non-convex optimisation;Machine Learning;2022-10-07

5. Supervised Machine Learning Approaches for Medical Data Classification;2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP);2022-02-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3