Author:
Tang Wei,Hua Gang,Wang Liang
Abstract
How to train a binary neural network (BinaryNet) with both high compression rate and high accuracy on large scale dataset? We answer this question through a careful analysis of previous work on BinaryNets, in terms of training strategies, regularization, and activation approximation. Our findings first reveal that a low learning rate is highly preferred to avoid frequent sign changes of the weights, which often makes the learning of BinaryNets unstable. Secondly, we propose to use PReLU instead of ReLU in a BinaryNet to conveniently absorb the scale factor for weights to the activation function, which enjoys high computation efficiency for binarized layers while maintains high approximation accuracy. Thirdly, we reveal that instead of imposing L2 regularization, driving all weights to zero which contradicts with the setting of BinaryNets, we introduce a regularization term that encourages the weights to be bipolar. Fourthly, we discover that the failure of binarizing the last layer, which is essential for high compression rate, is due to the improper output range. We propose to use a scale layer to bring it to normal. Last but not least, we propose multiple binarizations to improve the approximation of the activations. The composition of all these enables us to train BinaryNets with both high compression rate and high accuracy, which is strongly supported by our extensive empirical study.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献