CBin-NN: An Inference Engine for Binarized Neural Networks

Author:

Sakr Fouad12,Berta Riccardo1ORCID,Doyle Joseph2ORCID,Capello Alessio1ORCID,Dabbous Ali1ORCID,Lazzaroni Luca1ORCID,Bellotti Francesco1ORCID

Affiliation:

1. Department of Naval, Electrical, Electronics and Telecommunications Engineering, University of Genoa, 16145 Genoa, Italy

2. School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK

Abstract

Binarization is an extreme quantization technique that is attracting research in the Internet of Things (IoT) field, as it radically reduces the memory footprint of deep neural networks without a correspondingly significant accuracy drop. To support the effective deployment of Binarized Neural Networks (BNNs), we propose CBin-NN, a library of layer operators that allows the building of simple yet flexible convolutional neural networks (CNNs) with binary weights and activations. CBin-NN is platform-independent and is thus portable to virtually any software-programmable device. Experimental analysis on the CIFAR-10 dataset shows that our library, compared to a set of state-of-the-art inference engines, speeds up inference by 3.6 times and reduces the memory required to store model weights and activations by 7.5 times and 28 times, respectively, at the cost of slightly lower accuracy (2.5%). An ablation study stresses the importance of a Quantized Input Quantized Kernel Convolution layer to improve accuracy and reduce latency at the cost of a slight increase in model size.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3