Author:
Li Junjie,Li Haoran,Zong Chengqing
Abstract
We address personalized review summarization, which generates a condensed summary for a user’s review, accounting for his preference on different aspects or his writing style. We propose a novel personalized review summarization model named User-aware Sequence Network (USN) to consider the aforementioned users’ characteristics when generating summaries, which contains a user-aware encoder and a useraware decoder. Specifically, the user-aware encoder adopts a user-based selective mechanism to select the important information of a review, and the user-aware decoder incorporates user characteristic and user-specific word-using habits into word prediction process to generate personalized summaries. To validate our model, we collected a new dataset Trip, comprising 536,255 reviews from 19,400 users. With quantitative and human evaluation, we show that USN achieves state-ofthe-art performance on personalized review summarization.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献