Bidirectional Inference Networks:A Class of Deep Bayesian Networks for Health Profiling

Author:

Wang Hao,Mao Chengzhi,He Hao,Zhao Mingmin,Jaakkola Tommi S.,Katabi Dina

Abstract

We consider the problem of inferring the values of an arbitrary set of variables (e.g., risk of diseases) given other observed variables (e.g., symptoms and diagnosed diseases) and high-dimensional signals (e.g., MRI images or EEG). This is a common problem in healthcare since variables of interest often differ for different patients. Existing methods including Bayesian networks and structured prediction either do not incorporate high-dimensional signals or fail to model conditional dependencies among variables. To address these issues, we propose bidirectional inference networks (BIN), which stich together multiple probabilistic neural networks, each modeling a conditional dependency. Predictions are then made via iteratively updating variables using backpropagation (BP) to maximize corresponding posterior probability. Furthermore, we extend BIN to composite BIN (CBIN), which involves the iterative prediction process in the training stage and improves both accuracy and computational efficiency by adaptively smoothing the optimization landscape. Experiments on synthetic and real-world datasets (a sleep study and a dermatology dataset) show that CBIN is a single model that can achieve state-of-the-art performance and obtain better accuracy in most inference tasks than multiple models each specifically trained for a different task.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Landscape Learning for Neural Network Inversion;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

2. Efficient Parameter Learning of Bayesian Network with Latent Variables from High-Dimensional Data;2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS);2023-06-11

3. A Bayesian Graph Neural Network for EEG Classification — A Win-Win on Performance and Interpretability;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

4. Bayesian Invariant Risk Minimization;2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2022-06

5. A Survey on Bayesian Deep Learning;ACM Computing Surveys;2020-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3