A Survey on Bayesian Deep Learning

Author:

Wang Hao1,Yeung Dit-Yan2

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA, USA

2. Hong Kong University of Science and Technology, Kowloon, Hong Kong

Abstract

A comprehensive artificial intelligence system needs to not only perceive the environment with different “senses” (e.g., seeing and hearing) but also infer the world’s conditional (or even causal) relations and corresponding uncertainty. The past decade has seen major advances in many perception tasks, such as visual object recognition and speech recognition, using deep learning models. For higher-level inference, however, probabilistic graphical models with their Bayesian nature are still more powerful and flexible. In recent years, Bayesian deep learning has emerged as a unified probabilistic framework to tightly integrate deep learning and Bayesian models. 1 In this general framework, the perception of text or images using deep learning can boost the performance of higher-level inference and, in turn, the feedback from the inference process is able to enhance the perception of text or images. This survey provides a comprehensive introduction to Bayesian deep learning and reviews its recent applications on recommender systems, topic models, control, and so on. We also discuss the relationship and differences between Bayesian deep learning and other related topics, such as Bayesian treatment of neural networks.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3