Pathological Evidence Exploration in Deep Retinal Image Diagnosis

Author:

Niu Yuhao,Gu Lin,Lu Feng,Lv Feifan,Wang Zongji,Sato Imari,Zhang Zijian,Xiao Yangyan,Dai Xunzhang,Cheng Tingting

Abstract

Though deep learning has shown successful performance in classifying the label and severity stage of certain disease, most of them give few evidence on how to make prediction. Here, we propose to exploit the interpretability of deep learning application in medical diagnosis. Inspired by Koch’s Postulates, a well-known strategy in medical research to identify the property of pathogen, we define a pathological descriptor that can be extracted from the activated neurons of a diabetic retinopathy detector. To visualize the symptom and feature encoded in this descriptor, we propose a GAN based method to synthesize pathological retinal image given the descriptor and a binary vessel segmentation. Besides, with this descriptor, we can arbitrarily manipulate the position and quantity of lesions. As verified by a panel of 5 licensed ophthalmologists, our synthesized images carry the symptoms that are directly related to diabetic retinopathy diagnosis. The panel survey also shows that our generated images is both qualitatively and quantitatively superior to existing methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated Diabetic Retinopathy Grading and Segmentation Based on Semi-Supervised Learning;Modeling and Simulation;2024

2. MLGL: Model-free Lesion Generation and Learning for Diabetic Retinopathy Diagnosis;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

3. PatchBackdoor: Backdoor Attack against Deep Neural Networks without Model Modification;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

4. CA-GAN: A Method to Narrow Down Domain Differences of Retinal Fundus Images Caused by Camera Brands;Multimedia Tools and Applications;2023-10-12

5. Detecting Diabetic Retinopathy Using Deep Learning Techniques;2023 3rd International Conference on Intelligent Technologies (CONIT);2023-06-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3