Structured Two-Stream Attention Network for Video Question Answering

Author:

Gao Lianli,Zeng Pengpeng,Song Jingkuan,Li Yuan-Fang,Liu Wu,Mei Tao,Shen Heng Tao

Abstract

To date, visual question answering (VQA) (i.e., image QA and video QA) is still a holy grail in vision and language understanding, especially for video QA. Compared with image QA that focuses primarily on understanding the associations between image region-level details and corresponding questions, video QA requires a model to jointly reason across both spatial and long-range temporal structures of a video as well as text to provide an accurate answer. In this paper, we specifically tackle the problem of video QA by proposing a Structured Two-stream Attention network, namely STA, to answer a free-form or open-ended natural language question about the content of a given video. First, we infer rich longrange temporal structures in videos using our structured segment component and encode text features. Then, our structured two-stream attention component simultaneously localizes important visual instance, reduces the influence of background video and focuses on the relevant text. Finally, the structured two-stream fusion component incorporates different segments of query and video aware context representation and infers the answers. Experiments on the large-scale video QA dataset TGIF-QA show that our proposed method significantly surpasses the best counterpart (i.e., with one representation for the video input) by 13.0%, 13.5%, 11.0% and 0.3 for Action, Trans., TrameQA and Count tasks. It also outperforms the best competitor (i.e., with two representations) on the Action, Trans., TrameQA tasks by 4.1%, 4.7%, and 5.1%.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harnessing Representative Spatial-Temporal Information for Video Question Answering;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-07-05

2. Hierarchical synchronization with structured multi-granularity interaction for video question answering;Neurocomputing;2024-05

3. Transform-Equivariant Consistency Learning for Temporal Sentence Grounding;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-01-11

4. Object-based Appearance-Motion Heterogeneous Network for Video Question Answering;2023 IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS);2023-12-17

5. Multi-Granularity Interaction and Integration Network for Video Question Answering;IEEE Transactions on Circuits and Systems for Video Technology;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3