Harnessing Representative Spatial-Temporal Information for Video Question Answering

Author:

Wang Yuanyuan1ORCID,Liu Meng2ORCID,Song Xuemeng1ORCID,Nie Liqiang3ORCID

Affiliation:

1. Shandong University, China

2. Shandong Jianzhu University, China

3. Harbin Institute of Technology (Shenzhen), China

Abstract

Video question answering, aiming to answer a natural language question related to the given video, has become prevalent in the past few years. Although remarkable improvements have been obtained, it is still exposed to the challenge of insufficient comprehension of video content. To this end, we propose a spatial-temporal representative visual exploitation network for video question answering, which enhances the understanding of the video by merely summarizing representative visual information. In order to explore representative object information, we advance adaptive attention based on uncertainty estimation. At the same time, to capture representative frame-level and clip-level visual information, we structure a much more compact set of representations iteratively in an expectation-maximization manner to deprecate noisy information. Both the quantitative and qualitative results on NExT-QA, TGIF-QA, MSRVTT-QA, and MSVD-QA datasets demonstrate the superiority of our model over several state-of-the-art approaches.

Publisher

Association for Computing Machinery (ACM)

Reference42 articles.

1. Peter Anderson Xiaodong He Chris Buehler Damien Teney Mark Johnson Stephen Gould and Lei Zhang. 2018. Bottom-up and top-down attention for image captioning and visual question answering. In CVPR. 6077–6086.

2. Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014).

3. Long Hoang Dang, Thao Minh Le, Vuong Le, and Truyen Tran. 2021. Hierarchical object-oriented spatio-temporal reasoning for video question answering. In IJCAI. 636–642.

4. Chenyou Fan Xiaofan Zhang Shu Zhang Wensheng Wang Chi Zhang and Heng Huang. 2019. Heterogeneous memory enhanced multimodal attention model for video question answering. In CVPR. 1999–2007.

5. Difei Gao, Luowei Zhou, Lei Ji, Linchao Zhu, Yi Yang, and Mike Zheng Shou. 2023. MIST: Multi-modal Iterative Spatial-Temporal Transformer for Long-form Video Question Answering. In CVPR. 14773–14783.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3