CNN-Cert: An Efficient Framework for Certifying Robustness of Convolutional Neural Networks

Author:

Boopathy Akhilan,Weng Tsui-Wei,Chen Pin-Yu,Liu Sijia,Daniel Luca

Abstract

Verifying robustness of neural network classifiers has attracted great interests and attention due to the success of deep neural networks and their unexpected vulnerability to adversarial perturbations. Although finding minimum adversarial distortion of neural networks (with ReLU activations) has been shown to be an NP-complete problem, obtaining a non-trivial lower bound of minimum distortion as a provable robustness guarantee is possible. However, most previous works only focused on simple fully-connected layers (multilayer perceptrons) and were limited to ReLU activations. This motivates us to propose a general and efficient framework, CNN-Cert, that is capable of certifying robustness on general convolutional neural networks. Our framework is general – we can handle various architectures including convolutional layers, max-pooling layers, batch normalization layer, residual blocks, as well as general activation functions; our approach is efficient – by exploiting the special structure of convolutional layers, we achieve up to 17 and 11 times of speed-up compared to the state-of-the-art certification algorithms (e.g. Fast-Lin, CROWN) and 366 times of speed-up compared to the dual-LP approach while our algorithm obtains similar or even better verification bounds. In addition, CNN-Cert generalizes state-of-the-art algorithms e.g. Fast-Lin and CROWN. We demonstrate by extensive experiments that our method outperforms state-of-the-art lowerbound-based certification algorithms in terms of both bound quality and speed.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Zonotopic Dempster-Shafer Approach to the Quantitative Verification of Neural Networks;Lecture Notes in Computer Science;2024-09-11

2. Real-Time Diagnostic Technique for AI-Enabled System;IEEE Open Journal of Intelligent Transportation Systems;2024

3. DeepCDCL: A CDCL-based Neural Network Verification Framework;Lecture Notes in Computer Science;2024

4. Verification of Neural Networks’ Local Differential Classification Privacy;Lecture Notes in Computer Science;2023-12-30

5. The Case for Scalable Quantitative Neural Network Analysis;Proceedings of the 1st International Workshop on Dependability and Trustworthiness of Safety-Critical Systems with Machine Learned Components;2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3