Author:
Liu Zongxin,Yang Pengfei,Zhang Lijun,Huang Xiaowei
Publisher
Springer Nature Switzerland
Reference47 articles.
1. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and abstraction: a synergistic approach for analyzing neural network robustness. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 731–744 (2019)
2. Ashok, P., Hashemi, V., Kretínský, J., Mohr, S.: DeepAbstract: neural network abstraction for accelerating verification. In: Hung, D.V., Sokolsky, O. (eds.) Automated Technology for Verification and Analysis - 18th International Symposium, ATVA 2020, Hanoi, Vietnam, 19–23 October 2020, Proceedings, LNCS, vol. 12302, pp. 92–107. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6_5
3. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.: Measuring neural net robustness with constraints. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
4. Bertsimas, D., Tsitsiklis, J.N.: Introduction to linear optimization, vol. 6. Athena scientific Belmont, MA (1997)
5. Boopathy, A., Weng, T., Chen, P., Liu, S., Daniel, L.: Cnn-cert: an efficient framework for certifying robustness of convolutional neural networks. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. pp. 3240–3247. AAAI Press (2019).https://doi.org/10.1609/aaai.v33i01.33013240