Angular Triplet-Center Loss for Multi-View 3D Shape Retrieval

Author:

Li Zhaoqun,Xu Cheng,Leng Biao

Abstract

How to obtain the desirable representation of a 3D shape, which is discriminative across categories and polymerized within classes, is a significant challenge in 3D shape retrieval. Most existing 3D shape retrieval methods focus on capturing strong discriminative shape representation with softmax loss for the classification task, while the shape feature learning with metric loss is neglected for 3D shape retrieval. In this paper, we address this problem based on the intuition that the cosine distance of shape embeddings should be close enough within the same class and far away across categories. Since most of 3D shape retrieval tasks use cosine distance of shape features for measuring shape similarity, we propose a novel metric loss named angular triplet-center loss, which directly optimizes the cosine distances between the features. It inherits the triplet-center loss property to achieve larger inter-class distance and smaller intra-class distance simultaneously. Unlike previous metric loss utilized in 3D shape retrieval methods, where Euclidean distance is adopted and the margin design is difficult, the proposed method is more convenient to train feature embeddings and more suitable for 3D shape retrieval. Moreover, the angle margin is adopted to replace the cosine margin in order to provide more explicit discriminative constraints on an embedding space. Extensive experimental results on two popular 3D object retrieval benchmarks, ModelNet40 and ShapeNetCore 55, demonstrate the effectiveness of our proposed loss, and our method has achieved state-ofthe-art results on various 3D shape datasets.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wavelet-domain human activity recognition utilizing convolutional neural networks;Journal of Ambient Intelligence and Smart Environments;2023-11-16

2. Focus on Hard Samples: Hierarchical Unbiased Constraints for Cross-Domain 3D Model Retrieval;IEEE Transactions on Circuits and Systems for Video Technology;2023-11

3. Category-Level Articulated Object 9D Pose Estimation via Reinforcement Learning;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

4. Domain-specific modeling and semantic alignment for image-based 3D model retrieval;Computers & Graphics;2023-10

5. Multi-Range View Aggregation Network With Vision Transformer Feature Fusion for 3D Object Retrieval;IEEE Transactions on Multimedia;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3