Wavelet-domain human activity recognition utilizing convolutional neural networks

Author:

Tavakkoli Mohammad1,Nazerfard Ehsan1,Amirmazlaghani Maryam1

Affiliation:

1. Computer Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Abstract

Human activity recognition (HAR) is a crucial area of research in human-computer interaction. Despite previous efforts in this field, there is still a need for more accurate and robust methods that can handle time-series data from different sensors. In this study, we propose a novel method that generates an image using wavelet transform to extract time-frequency features of the recorded signal. Our method employs convolutional neural networks (CNNs) for feature extraction and activity recognition, and a new loss function that produces denser representations for samples, improving the model’s generalization on unseen samples. To evaluate the effectiveness of our proposed method, we conducted experiments on multiple publicly available data sets. Our results demonstrate that our method outperforms previous methods in terms of activity classification accuracy. Specifically, our method achieves higher accuracy rates and demonstrates improved robustness in real-world settings. Overall, our proposed method addresses the research gap of accurate and robust activity recognition from time-series data recorded from different sensors. Our findings have the potential to improve the accuracy and robustness of human activity recognition systems in real-world applications.

Publisher

IOS Press

Subject

Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3