Author:
Tao Hanqing,Tong Shiwei,Zhao Hongke,Xu Tong,Jin Binbin,Liu Qi
Abstract
Recent years, Chinese text classification has attracted more and more research attention. However, most existing techniques which specifically aim at English materials may lose effectiveness on this task due to the huge difference between Chinese and English. Actually, as a special kind of hieroglyphics, Chinese characters and radicals are semantically useful but still unexplored in the task of text classification. To that end, in this paper, we first analyze the motives of using multiple granularity features to represent a Chinese text by inspecting the characteristics of radicals, characters and words. For better representing the Chinese text and then implementing Chinese text classification, we propose a novel Radicalaware Attention-based Four-Granularity (RAFG) model to take full advantages of Chinese characters, words, characterlevel radicals, word-level radicals simultaneously. Specifically, RAFG applies a serialized BLSTM structure which is context-aware and able to capture the long-range information to model the character sharing property of Chinese and sequence characteristics in texts. Further, we design an attention mechanism to enhance the effects of radicals thus model the radical sharing property when integrating granularities. Finally, we conduct extensive experiments, where the experimental results not only show the superiority of our model, but also validate the effectiveness of radicals in the task of Chinese text classification.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献