Global sparse attention network for remote sensing image super-resolution
-
Published:2024-11
Issue:
Volume:304
Page:112448
-
ISSN:0950-7051
-
Container-title:Knowledge-Based Systems
-
language:en
-
Short-container-title:Knowledge-Based Systems
Author:
Hu TaoORCID,
Chen ZijieORCID,
Wang Mingyi,
Hou Xintong,
Lu XiaopingORCID,
Pan YuanyuanORCID,
Li JianqingORCID
Reference41 articles.
1. Deep residual squeeze and excitation network for remote sensing image super-resolution;Gu;Remote Sens.,2019
2. E. Agustsson, R. Timofte, Ntire 2017 challenge on single image super-resolution: Dataset and study, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017, pp. 126–135.
3. X. Wang, R. Girshick, A. Gupta, K. He, Non-local neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7794–7803.
4. Image super-resolution via adaptive sparse representation;Zhao;Knowl.-Based Syst.,2017
5. Remote sensing image super-resolution using sparse representation and coupled sparse autoencoder;Shao;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2019