Deep Residual Squeeze and Excitation Network for Remote Sensing Image Super-Resolution

Author:

Gu JunORCID,Sun Xian,Zhang Yue,Fu Kun,Wang Lei

Abstract

Recently, deep convolutional neural networks (DCNN) have obtained promising results in single image super-resolution (SISR) of remote sensing images. Due to the high complexity of remote sensing image distribution, most of the existing methods are not good enough for remote sensing image super-resolution. Enhancing the representation ability of the network is one of the critical factors to improve remote sensing image super-resolution performance. To address this problem, we propose a new SISR algorithm called a Deep Residual Squeeze and Excitation Network (DRSEN). Specifically, we propose a residual squeeze and excitation block (RSEB) as a building block in DRSEN. The RSEB fuses the input and its internal features of current block, and models the interdependencies and relationships between channels to enhance the representation power. At the same time, we improve the up-sampling module and the global residual pathway in the network to reduce the parameters of the network. Experiments on two public remote sensing datasets (UC Merced and NWPU-RESISC45) show that our DRSEN achieves better accuracy and visual improvements against most state-of-the-art methods. The DRSEN is beneficial for the progress in the remote sensing images super-resolution field.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3