Logistic Regression on Homomorphic Encrypted Data at Scale

Author:

Han Kyoohyung,Hong Seungwan,Cheon Jung Hee,Park Daejun

Abstract

Machine learning on (homomorphic) encrypted data is a cryptographic method for analyzing private and/or sensitive data while keeping privacy. In the training phase, it takes as input an encrypted training data and outputs an encrypted model without ever decrypting. In the prediction phase, it uses the encrypted model to predict results on new encrypted data. In each phase, no decryption key is needed, and thus the data privacy is ultimately guaranteed. It has many applications in various areas such as finance, education, genomics, and medical field that have sensitive private data. While several studies have been reported on the prediction phase, few studies have been conducted on the training phase.In this paper, we present an efficient algorithm for logistic regression on homomorphic encrypted data, and evaluate our algorithm on real financial data consisting of 422,108 samples over 200 features. Our experiment shows that an encrypted model with a sufficient Kolmogorov Smirnow statistic value can be obtained in ∼17 hours in a single machine. We also evaluate our algorithm on the public MNIST dataset, and it takes ∼2 hours to learn an encrypted model with 96.4% accuracy. Considering the inefficiency of homomorphic encryption, our result is encouraging and demonstrates the practical feasibility of the logistic regression training on large encrypted data, for the first time to the best of our knowledge.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Privacy-preserving logistic regression with improved efficiency;Journal of Information Security and Applications;2024-09

2. SoK: Fully Homomorphic Encryption Accelerators;ACM Computing Surveys;2024-07-05

3. Machine Learning Training on Encrypted Data with TFHE;Proceedings of the 10th ACM International Workshop on Security and Privacy Analytics;2024-06-19

4. BitPacker: Enabling High Arithmetic Efficiency in Fully Homomorphic Encryption Accelerators;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2;2024-04-27

5. Predicting Economic Advantages in Smart Innovative City Development: A CSO-MCNN Approach;Journal of the Knowledge Economy;2024-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3