SoK: Fully Homomorphic Encryption Accelerators

Author:

Zhang Junxue12ORCID,Cheng Xiaodian3ORCID,Yang Liu32ORCID,Hu Jinbin3ORCID,Liu Ximeng4ORCID,Chen Kai3ORCID

Affiliation:

1. The Hong Kong University of Science and Technology, Hong Kong, Hong Kong

2. Clustar, Hong Kong Hong Kong

3. The Hong Kong University of Science and Technology, Hong Kong Hong Kong

4. Fuzhou University, Fuzhou China

Abstract

Fully Homomorphic Encryption (FHE) is a key technology enabling privacy-preserving computing. However, the fundamental challenge of FHE is its inefficiency, due primarily to the underlying polynomial computations with high computation complexity and extremely time-consuming ciphertext maintenance operations. To tackle this challenge, various FHE accelerators have recently been proposed by both research and industrial communities. This paper takes the first initiative to conduct a systematic study on the 14 FHE accelerators — cuHE/cuFHE, nuFHE, HEAT, HEAX, HEXL, HEXL-FPGA, 100 ×, F1, CraterLake, BTS, ARK, Poseidon, FAB and TensorFHE. We first make our observations on the evolution trajectory of these existing FHE accelerators to establish a qualitative connection between them. Then, we perform testbed evaluations of representative open-source FHE accelerators to provide a quantitative comparison on them. Finally, with the insights learned from both qualitative and quantitative studies, we discuss potential directions to inform the future design and implementation for FHE accelerators.

Publisher

Association for Computing Machinery (ACM)

Reference92 articles.

1. 2015. CUDA Homomorphic Encryption Library (cuHE). https://github.com/vernamlab/cuHE. Accessed: 2022-07-30.

2. 2016. Intel Stratix 10 GX/SX Product Table. https://www.intel.com/content/www/us/en/content-details/652478/intel-stratix-10-gx-fpga-and-intel-stratix-10-sx-soc-fpga-family-overview-product-table.html. Accessed: 2023-03-07.

3. 2017. NVIDIA V100 Datasheet. https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf. Accessed: 2023-03-07.

4. 2018. CUDA-accelerated Fully Homomorphic Encryption Library (cuFHE). https://github.com/vernamlab/cuFHE. Accessed: 2022-07-30.

5. 2018. A GPU implementation of fully homomorphic encryption on torus. https://github.com/nucypher/nufhe. Accessed: 2022-07-07.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on FPGA-based Accelerators for CKKS;2024 IEEE International Test Conference in Asia (ITC-Asia);2024-08-18

2. High-Performance Hardware Acceleration Architecture for Cross-Silo Federated Learning;IEEE Transactions on Parallel and Distributed Systems;2024-08

3. FHEDA: Efficient Circuit Synthesis with Reduced Bootstrapping for Torus FHE;2024 IEEE 9th European Symposium on Security and Privacy (EuroS&P);2024-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3