Stochastic Fairness and Language-Theoretic Fairness in Planning in Nondeterministic Domains

Author:

Aminof Benjamin,De Giacomo Giuseppe,Rubin Sasha

Abstract

We address two central notions of fairness in the literature of nondeterministic fully observable domains. The first, which we call stochastic fairness, is classical, and assumes an environment which operates probabilistically using possibly unknown probabilities. The second, which is language-theoretic, assumes that if an action is taken from a given state infinitely often then all its possible outcomes should appear infinitely often; we call this state-action fairness. While the two notions coincide for standard reachability goals, they differ for temporally extended goals. This important difference has been overlooked in the planning literature and has led to the use of a product-based reduction in a number of published algorithms which were stated for state-action fairness, for which they are incorrect, while being correct for stochastic fairness. We remedy this and provide a correct optimal algorithm for solving state-action fair planning for ltl/ltlf goals, as well as a correct proof of the lower bound of the goal-complexity. Our proof is general enough that it also provides, for the no-fairness and stochastic-fairness cases, multiple missing lower bounds and new proofs of known lower bounds. Overall, we show that stochastic fairness is better behaved than state-action fairness.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fair $$\omega $$-Regular Games;Lecture Notes in Computer Science;2024

2. Solving Two-Player Games Under Progress Assumptions;Lecture Notes in Computer Science;2023-12-30

3. Temporally extended goal recognition in fully observable non-deterministic domain models;Applied Intelligence;2023-12-14

4. Stochastic Best-Effort Strategies for Borel Goals;2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2023-06-26

5. Behavioral QLTL;Multi-Agent Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3