Approximating the Value of Collaborative Team Actions for Efficient Multiagent Navigation in Uncertain Graphs

Author:

Stadler Martina,Banfi Jacopo,Roy Nicholas

Abstract

For a team of collaborative agents navigating through an unknown environment, collaborative actions such as sensing the traversability of a route can have a large impact on aggregate team performance. However, planning over the full space of joint team actions is generally computationally intractable. Furthermore, typically only a small number of collaborative actions is useful for a given team task, but it is not obvious how to assess the usefulness of a given action. In this work, we model collaborative team policies on stochastic graphs using macro-actions, where each macro-action for a given agent can consist of a sequence of movements, sensing actions, and actions of waiting to receive information from other agents. To reduce the number of macro-actions considered during planning, we generate optimistic approximations of candidate future team states, then restrict the planning domain to a small policy class which consists of only macro-actions which are likely to lead to high-reward future team states. We optimize team plans over the small policy class, and demonstrate that the approach enables a team to find policies which actively balance between reducing task-relevant environmental uncertainty and efficiently navigating to goals in toy graph and island road network domains, finding better plans than policies that do not act to reduce environmental uncertainty.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generating Sparse Probabilistic Graphs for Efficient Planning in Uncertain Environments;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. Efficient Reinforcement Learning via Decoupling Exploration and Utilization;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3