Author:
Wang Shuai,Chen Zhiyuan,Liu Bing,Emery Sherry
Abstract
In almost any application of social media analysis, the user is interested in studying a particular topic or research question. Collecting posts or messages relevant to the topic from a social media source is a necessary step. Due to the huge size of social media sources (e.g., Twitter and Facebook), one has to use some topic keywords to search for possibly relevant posts. However, gathering a good set of keywords is a very tedious and time-consuming task. It often involves a lengthy iterative process of searching and manual reading. In this paper, we propose a novel technique to help the user identify topical search keywords. Our experiments are carried out on identifying such keywords for five (5) real-life application topics to be used for searching relevant tweets from the Twitter API. The results show that the proposed method is highly effective.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献