Author:
Schaefer Kristin E.,Oh Jean,Aksaray Derya,Barber Daniel
Abstract
Applying context to a situation, task, or system state provides meaning and advances understanding that can affect future decisions or actions. Although people are naturally good at perceiving contextual understanding and inferring missing pieces of information using various alternative sources, this process is difficult for AI systems or robots, especially in high-uncertainty and unstructured operations. Integration of context-driven AI is important for future robotic capabilities to support the development of situation awareness, calibrate appropriate trust, and improve team performance in collaborative human-robot teams. This article highlights advances in context-driven AI for human-robot teaming by the Army Research Laboratory’s Robotics Collaborative Technology Alliance. Avenues of research discussed include how context enables robots to fill in the gaps to make effective decisions more quickly, supports more robust behaviors, and augments robot communications to suit the needs of the team under a variety of environments and team organizations and across missions.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献