Action Recognition for Human–Robot Teaming: Exploring Mutual Performance Monitoring Possibilities

Author:

Mehak Shakra12ORCID,Kelleher John D.3ORCID,Guilfoyle Michael1ORCID,Leva Maria Chiara2ORCID

Affiliation:

1. Pilz Ireland Industrial Automation, T12 AW80 Cork, Ireland

2. School of Food Science and Environmental Health, Technological University Dublin, D07 H6K8 Dublin, Ireland

3. School of Computer Science and Statistics, Trinity College Dublin, D02 PN40 Dublin, Ireland

Abstract

Human–robot teaming (HrT) is being adopted in an increasing range of industries and work environments. Effective HrT relies on the success of complex and dynamic human–robot interaction. Although it may be optimal for robots to possess all the social and emotional skills to function as productive team members, certain cognitive capabilities can enable them to develop attitude-based competencies for optimizing teams. Despite the extensive research into the human–human team structure, the domain of HrT research remains relatively limited. In this sense, incorporating established human–human teaming (HhT) elements may prove practical. One key element is mutual performance monitoring (MPM), which involves the reciprocal observation and active anticipation of team members’ actions within the team setting, fostering enhanced team coordination and communication. By adopting this concept, this study uses ML-based visual action recognition as a potential tool for developing an effective way to monitor the human component in HrT. This study utilizes a data modeling approach on an existing dataset, the “Industrial Human Action Recognition Dataset” (InHARD), curated specifically for human action recognition assembly tasks in industrial environments involving human–robot collaborations. This paper presents the results of this modeling approach in analyzing the dataset to implement a theoretical concept that can be a first step toward enabling the system to adapt dynamically. The outcomes emphasize the significance of implementing state-of-the-art team concepts by integrating modern technologies and assessing the possibility of advancing HrT in this direction.

Funder

Collaborative Intelligence for Safety-Critical Systems

Marie Skłodowska-Curie

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3