Collaborative Language Grounding Toward Situated Human-Robot Dialogue

Author:

Chai Joyce Y.,Fang Rui,Liu Changsong,She Lanbo

Abstract

To enable situated human-robot dialogue, techniques to support grounded language communication are essential. One particular challenge is to ground human language to robot internal representation of the physical world. Although copresent in a shared environment, humans and robots have mismatched capabilities in reasoning, perception, and action. Their representations of the shared environment and joint tasks are significantly misaligned. Humans and robots will need to make extra effort to bridge the gap and strive for a common ground of the shared world. Only then, is the robot able to engage in language communication and joint tasks. Thus computational models for language grounding will need to take collaboration into consideration. A robot not only needs to incorporate collaborative effort from human partners to better connect human language to its own representation, but also needs to make extra collaborative effort to communicate its representation in language that humans can understand. To address these issues, the Language and Interaction Research group (LAIR) at Michigan State University has investigated multiple aspects of collaborative language grounding. This article gives a brief introduction to this research effort and discusses several collaborative approaches to grounding language to perception and action.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

Artificial Intelligence

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hypotheses-driven framework for human–machine expertise process;Cognitive Systems Research;2024-09

2. Assessing the Impact of Alerts on the Human Supervisor’s Decision-Making Performance in Multi-Robot Missions;ACM Transactions on Human-Robot Interaction;2024-08-31

3. Think, Act, and Ask: Open-World Interactive Personalized Robot Navigation;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

4. A Systematic Review of Speech Understanding Studies for Human-Robot Collaborative Construction;Computing in Civil Engineering 2023;2024-01-25

5. User Acceptance of New HCI Technologies;2023 IEEE 6th International Conference and Workshop Óbuda on Electrical and Power Engineering (CANDO-EPE);2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3