Neighborhood Consensus Networks for Unsupervised Multi-view Outlier Detection

Author:

Cheng Li,Wang Yijie,Liu Xinwang

Abstract

Multi-view outlier detection recently attracted rapidly growing attention with the development of multi-view learning. Although promising performance demonstrated, we observe that identifying outliers in multi-view data is still a challenging task due to the complicated characteristics of multi-view data. Specifically, an effective multi-view outlier detection method should be able to handle (1) different types of outliers; (2) two or more views; (3) samples without clusters; (4) high dimensional data. Unfortunately, little is known about how these four issues can be handled simultaneously. In this paper, we propose an unsupervised multi-view outlier detection method to address these issues. Our method is based on the proposed novel neighborhood consensus networks termed NC-Nets, which automatically encodes intrinsic information into a comprehensive latent space for each view (for issue (4)) and uniforms the neighborhood structures among different views (for issue (2)). Accordingly, we propose an outlier score measurement which consists of two parts: the within-view reconstruction score and the cross-view neighborhood consensus score. The measurement is designed based on the characteristics of the different outlier types (for issue (1)) and no cluster assumption is needed (for issue (3)). Experimental results show that our method significantly outperforms state-of-the-art methods. On average, our method achieves 11.2% ~ 96.2% improvement in term of AUC and 33.5% ~ 352.7% improvement in term of F1-Score.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SeeM: A Shared Latent Variable Model for Unsupervised Multi-view Anomaly Detection;Lecture Notes in Computer Science;2024

2. Multi-view Outlier Detection via Graphs Denoising;Information Fusion;2024-01

3. Information-Aware Multi-View Outlier Detection;ACM Transactions on Knowledge Discovery from Data;2023-12-22

4. Multi-View Outlier Detection Based on High-Order Neighbor Information;2023 7th Asian Conference on Artificial Intelligence Technology (ACAIT);2023-11-10

5. Debunking Free Fusion Myth: Online Multi-view Anomaly Detection with Disentangled Product-of-Experts Modeling;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3