Information-Aware Multi-View Outlier Detection

Author:

Lai Jinrong1,Wang Tong1,Chen Chuan1,Zheng Zibin2

Affiliation:

1. School of Computer Science and Engineering, Sun Yat-sen University, China

2. School of Software Engineering, Sun Yat-sen University, China

Abstract

With the development of multi-view learning, multi-view outlier detection has received increasing attention in recent years. However, the current research still faces two challenges: (1) The current research lacks theoretical analysis tools for multi-view outliers. (2) Most current multi-view outlier detection algorithms are based on shallow structural assumptions of the data, such as cluster assumptions and subspace assumptions, thus they are not suitable for more complex data distributions. In addressing these two issues, this paper proposes three occurrence mechanisms of multi-view outlier, which serve as foundational theoretical analysis tools for multi-view outliers. Utilizing proposed mechanisms, we analyze the impact of multi-view outliers and the information structure of multi-view data and validate our findings through experiments. Finally, we propose a novel algorithm referred to as Information-Aware Multi-View Outlier Detection (IAMOD). In contrast to other methods, IAMOD focuses on the information structure of multi-view data without relying on shallow structural assumptions. By learning a compact representation of the sample that is semantically rich and non-redundant, IAMOD can accurately identify multi-view outliers by comparing the consistency of the representations’ neighbors and views. Extensive experimental results demonstrate that our approach outperforms several state-of-the-art multi-view outlier detection methods.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference17 articles.

1. Philip Bachman , R Devon Hjelm , and William Buchwalter . 2019. Learning representations by maximizing mutual information across views. Advances in neural information processing systems 32 ( 2019 ). Philip Bachman, R Devon Hjelm, and William Buchwalter. 2019. Learning representations by maximizing mutual information across views. Advances in neural information processing systems 32 (2019).

2. Mohamed Ishmael Belghazi , Aristide Baratin , Sai Rajeshwar , Sherjil Ozair , Yoshua Bengio , Aaron Courville , and Devon Hjelm . 2018 . Mutual information neural estimation . In International conference on machine learning. PMLR, 531–540 . Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron Courville, and Devon Hjelm. 2018. Mutual information neural estimation. In International conference on machine learning. PMLR, 531–540.

3. Anomaly detection

4. Neighborhood Consensus Networks for Unsupervised Multi-view Outlier Detection

5. Intrusion as (anti)social communication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3