BT Expansion: a Sound and Complete Algorithm for Behavior Planning of Intelligent Robots with Behavior Trees

Author:

Cai Zhongxuan,Li Minglong,Huang Wanrong,Yang Wenjing

Abstract

Behavior Trees (BTs) have attracted much attention in the robotics field in recent years, which generalize existing control architectures and bring unique advantages for building robot systems. Automated synthesis of BTs can reduce human workload and build behavior models for complex tasks beyond the ability of human design, but theoretical studies are almost missing in existing methods because it is difficult to conduct formal analysis with the classic BT representations. As a result, they may fail in tasks that are actually solvable. This paper proposes BT expansion, an automated planning approach to building intelligent robot behaviors with BTs, and proves the soundness and completeness through the state-space formulation of BTs. The advantages of blended reactive planning and acting are formally discussed through the region of attraction of BTs, by which robots with BT expansion are robust to any resolvable external disturbances. Experiments with a mobile manipulator and test sets are simulated to validate the effectiveness and efficiency, where the proposed algorithm surpasses the baseline by virtue of its soundness and completeness. To the best of our knowledge, it is the first time to leverage the state-space formulation to synthesize BTs with a complete theoretical basis.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formal Verification Based Synthesis for Behavior Trees;Dependable Software Engineering. Theories, Tools, and Applications;2023-12-15

2. Task Switching Model for Acceleration Control of Multi-DOF Manipulator Using Behavior Trees;IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society;2023-10-16

3. Self-Optimizing Agents Using Mixed Initiative Behavior Trees;2023 IEEE/ACM 18th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS);2023-05

4. A Robust and Learning Approach for Multi-Phase Aerial Search with UAVs;Proceedings of the 3rd International Conference on Advanced Information Science and System;2021-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3