Author:
Kumar Chandan,Ramesh Jayanth,Chakraborty Bodhisattwa,Raman Renjith,Weinrich Christoph,Mundhada Anurag,Jain Arjun,Flohr Fabian B.
Abstract
We present a fast and efficient approach for joint person detection and pose estimation optimized for automated driving (AD) in urban scenarios. We use a multitask weight sharing architecture to jointly train detection and pose estimation. This modular architecture allows us to accommodate different downstream tasks in the future. By systematic large-scale experiments on the Tsinghua-Daimler Urban Pose Dataset (TDUP), we obtain multiple models with varying accuracy-speed trade-offs. We then quantize and optimize our network for deployment and present a detailed analysis of the efficacy of the algorithm. We introduce a two-stage evaluation strategy, which is more suitable for AD and achieve a significant performance improvement in comparison to state-of-the-art approaches. Our optimized model runs at 52~fps on full HD images and still reaches a competitive performance of 32.25~LAMR. We are confident that our work serves as an enabler to tackle higher-level tasks like VRU intention estimation and gesture recognition, which rely on stable pose estimates and will play a crucial role in future AD systems.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献