Author:
Patra Sunandita,Velazquez Alex,Kang Myong,Nau Dana
Abstract
We describe ACR-SDN, a system to monitor, diagnose, and quickly respond to attacks or failures that may occur in software-defined networks (SDNs). An integral part of ACR-SDN is its use of RAE+UPOM, an automated acting and planning engine that uses hierarchical refinement. To advise ACR-SDN on how to recover a target system from faults and attacks, RAE+UPOM uses attack recovery procedures written as hierarchical operational models. Our experimental results show that the use of refinement planning in ACR-SDN is successful in recovering SDNs from attacks with respect to five performance metrics: estimated time for recovery, efficiency, retry ratio, success ratio, and costEffectiveness.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献