Collaborative Cost Multi-Agent Decision-Making Algorithm with Factored-Value Monte Carlo Tree Search and Max-Plus

Author:

Alexander-Reindorf Nii-Emil1,Cotae Paul2ORCID

Affiliation:

1. Department of Computer Science, School of Engineering and Applied Sciences, The University of the District of Columbia, Washington, DC 20008, USA

2. Department of Electrical and Computer Engineering, School of Engineering and Applied Sciences, The University of the District of Columbia, Washington, DC 20008, USA

Abstract

In this paper, we describe the Factored Value MCTS Hybrid Cost-Max-Plus algorithm, a collection of decision-making algorithms (centralized, decentralized, and hybrid) for a multi-agent system in a collaborative setting that considers action costs. Our proposed algorithm is made up of two steps. In the first step, each agent searches for the best individual actions with the lowest cost using the Monte Carlo Tree Search (MCTS) algorithm. Each agent’s most promising activities are chosen and presented to the team. The Hybrid Cost Max-Plus method is utilized for joint action selection in the second step. The Hybrid Cost Max-Plus algorithm improves the well-known centralized and distributed Max-Plus algorithm by incorporating the cost of actions in agent interactions. The Max-Plus algorithm employed the Coordination Graph framework, which exploits agent dependencies to decompose the global payoff function as the sum of local terms. In terms of the number of agents and their interactions, the suggested Factored Value MCTS-Hybrid Cost-Max-Plus method is online, anytime, distributed, and scalable. Our contribution competes with state-of-the-art methodologies and algorithms by leveraging the locality of agent interactions for planning and acting utilizing MCTS and Max-Plus algorithms.

Funder

ARLIS

Publisher

MDPI AG

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3