A Bottom-Up DAG Structure Extraction Model for Math Word Problems

Author:

Cao Yixuan,Hong Feng,Li Hongwei,Luo Ping

Abstract

Research on automatically solving mathematical word problems (MWP) has a long history. Most recent works adopt Seq2Seq approach to predict the result equations as a sequence of quantities and operators. Although result equations can be written as a sequence, it is essentially a structure. More precisely, it is a Direct Acyclic Graph (DAG) whose leaf nodes are the quantities, and internal and root nodes are arithmetic or comparison operators. In this paper, we propose a novel Seq2DAG approach to extract the equation set directly as a DAG structure. It is extracted in a bottom-up fashion by aggregating quantities and sub-expressions layer by layer iteratively. The advantages of our approach approach are three-fold: it is intrinsically suitable to solve multivariate problems, it always outputs valid structure, and its computation satisfies commutative law for +, x and =. Experimental results on Math23K and DRAW1K demonstrate that our model outperforms state-of-the-art deep learning methods. We also conduct detailed analysis on the results to show the strengths and limitations of our approach.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Math Word Problem Solving Through Salient Clue Prioritization: A Joint Token-Phrase-Level Feature Integration Approach;2023 International Conference on Asian Language Processing (IALP);2023-11-18

2. Vector relation acquisition and scene knowledge for solving arithmetic word problems;Journal of King Saud University - Computer and Information Sciences;2023-09

3. Abstractive Analysis of Traditional and GPT-based Methods for Solving Algebra Problems;Proceedings of the 7th International Conference on Education and Multimedia Technology;2023-08-29

4. Improving Math Word Problems Solver with Logical Semantic Similarity;2023 International Joint Conference on Neural Networks (IJCNN);2023-06-18

5. Nested relation extraction via self-contrastive learning guided by structure and semantic similarity;Neural Networks;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3