Error-Aware Density Isomorphism Reconstruction for Unsupervised Cross-Domain Crowd Counting

Author:

He Yuhang,Ma Zhiheng,Wei Xing,Hong Xiaopeng,Ke Wei,Gong Yihong

Abstract

This paper focuses on the unsupervised domain adaptation problem for video-based crowd counting, in which we use labeled data as source domain and unlabelled video data as target domain. It is challenging as there is a huge gap between the source and the target domain and no annotations of samples are available in the target domain. The key issue is how to utilize unlabelled videos in the target domain for knowledge learning and transferring from the source domain. To tackle this problem, we propose a novel Error-aware Density Isomorphism REConstruction Network (EDIREC-Net) for cross-domain crowd counting. EDIREC-Net jointly transfers a pre-trained counting model to target domains using a density isomorphism reconstruction objective and models the reconstruction erroneousness by error reasoning. Specifically, as crowd flows in videos are consecutive, the density maps in adjacent frames turn out to be isomorphic. On this basis, we regard the density isomorphism reconstruction error as a self-supervised signal to transfer the pre-trained counting models to different target domains. Moreover, we leverage an estimation-reconstruction consistency to monitor the density reconstruction erroneousness and suppress unreliable density reconstructions during training. Experimental results on four benchmark datasets demonstrate the superiority of the proposed method and ablation studies investigate the efficiency and robustness. The source code is available at https://github.com/GehenHe/EDIREC-Net.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Global self-sustaining and local inheritance for source-free unsupervised domain adaptation;Pattern Recognition;2024-11

2. Crowd Counting Using Meta-Test-Time Adaptation;International Journal of Neural Systems;2024-09-09

3. Innovative healthcare solutions: robust hand gesture recognition of daily life routines using 1D CNN;Frontiers in Bioengineering and Biotechnology;2024-07-31

4. Masked Image Self-Learning and Knowledge Distillation for Source-Free Unsupervised Domain Adaptation in Crowd Counting;2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML);2023-11-03

5. Fine-grained Domain Adaptive Crowd Counting via Point-derived Segmentation;2023 IEEE International Conference on Multimedia and Expo (ICME);2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3