To Choose or to Fuse? Scale Selection for Crowd Counting

Author:

Song Qingyu,Wang Changan,Wang Yabiao,Tai Ying,Wang Chengjie,Li Jilin,Wu Jian,Ma Jiayi

Abstract

In this paper, we address the large scale variation problem in crowd counting by taking full advantage of the multi-scale feature representations in a multi-level network. We implement such an idea by keeping the counting error of a patch as small as possible with a proper feature level selection strategy, since a specific feature level tends to perform better for a certain range of scales. However, without scale annotations, it is sub-optimal and error-prone to manually assign the predictions for heads of different scales to specific feature levels. Therefore, we propose a Scale-Adaptive Selection Network (SASNet), which automatically learns the internal correspondence between the scales and the feature levels. Instead of directly using the predictions from the most appropriate feature level as the final estimation, our SASNet also considers the predictions from other feature levels via weighted average, which helps to mitigate the gap between discrete feature levels and continuous scale variation. Since the heads in a local patch share roughly a same scale, we conduct the adaptive selection strategy in a patch-wise style. However, pixels within a patch contribute different counting errors due to the various difficulty degrees of learning. Thus, we further propose a Pyramid Region Awareness Loss (PRA Loss) to recursively select the most hard sub-regions within a patch until reaching the pixel level. With awareness of whether the parent patch is over-estimated or under-estimated, the fine-grained optimization with the PRA Loss for these region-aware hard pixels helps to alleviate the inconsistency problem between training target and evaluation metric. The state-of-the-art results on four datasets demonstrate the superiority of our approach. The code will be available at: https://github.com/TencentYoutuResearch/CrowdCounting-SASNet.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3