Hypothesis Disparity Regularized Mutual Information Maximization

Author:

Lao Qicheng,Jiang Xiang,Havaei Mohammad

Abstract

We propose a hypothesis disparity regularized mutual information maximization (HDMI) approach to tackle unsupervised hypothesis transfer---as an effort towards unifying hypothesis transfer learning (HTL) and unsupervised domain adaptation (UDA)---where the knowledge from a source domain is transferred solely through hypotheses and adapted to the target domain in an unsupervised manner. In contrast to the prevalent HTL and UDA approaches that typically use a single hypothesis, HDMI employs multiple hypotheses to leverage the underlying distributions of the source and target hypotheses. To better utilize the crucial relationship among different hypotheses---as opposed to unconstrained optimization of each hypothesis independently---while adapting to the unlabeled target domain through mutual information maximization, HDMI incorporates a hypothesis disparity regularization that coordinates the target hypotheses jointly learn better target representations while preserving more transferable source knowledge with better-calibrated prediction uncertainty. HDMI achieves state-of-the-art adaptation performance on benchmark datasets for UDA in the context of HTL, without the need to access the source data during the adaptation.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Survey on Test-Time Adaptation Under Distribution Shifts;International Journal of Computer Vision;2024-07-18

2. Subspace Metric-Based Transfer Learning for Spindle Thermal Error Prediction Under Time-Varying Conditions;IEEE Transactions on Instrumentation and Measurement;2024

3. Continual Unsupervised Domain Adaptation in Data-Constrained Environments;IEEE Transactions on Artificial Intelligence;2024-01

4. Source-Free Domain Adaptation via Target Prediction Distribution Searching;International Journal of Computer Vision;2023-10-04

5. Anatomically Guided Cross-Domain Repair and Screening for Ultrasound Fetal Biometry;IEEE Journal of Biomedical and Health Informatics;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3