Source-Free Domain Adaptation via Target Prediction Distribution Searching

Author:

Tang Song,Chang An,Zhang Fabian,Zhu Xiatian,Ye Mao,Zhang Changshui

Abstract

AbstractExisting Source-Free Domain Adaptation (SFDA) methods typically adopt the feature distribution alignment paradigm via mining auxiliary information (eg., pseudo-labelling, source domain data generation). However, they are largely limited due to that the auxiliary information is usually error-prone whilst lacking effective error-mitigation mechanisms. To overcome this fundamental limitation, in this paper we propose a novel Target Prediction Distribution Searching (TPDS) paradigm. Theoretically, we prove that in case of sufficient small distribution shift, the domain transfer error could be well bounded. To satisfy this condition, we introduce a flow of proxy distributions that facilitates the bridging of typically large distribution shift from the source domain to the target domain. This results in a progressive searching on the geodesic path where adjacent proxy distributions are regularized to have small shift so that the overall errors can be minimized. To account for the sequential correlation between proxy distributions, we develop a new pairwise alignment with category consistency algorithm for minimizing the adaptation errors. Specifically, a manifold geometry guided cross-distribution neighbour search is designed to detect the data pairs supporting the Wasserstein distance based shift measurement. Mutual information maximization is then adopted over these pairs for shift regularization. Extensive experiments on five challenging SFDA benchmarks show that our TPDS achieves new state-of-the-art performance. The code and datasets are available at https://github.com/tntek/TPDS.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Reference71 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Source-Free Domain Adaptation Guided by Vision and Vision-Language Pre-training;International Journal of Computer Vision;2024-08-20

2. A Comprehensive Survey on Source-Free Domain Adaptation;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-08

3. Adversarial Reweighting with $$\alpha $$-Power Maximization for Domain Adaptation;International Journal of Computer Vision;2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3